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1. Introduction

The problems involved in monitoring 1evels.of various substances in
the environment for possible classification as toxic alr contaminants is
of public health concern because of the possible carcinogenic effects that
such substances might have on man. In general, dose is considered to be
the best measure of carcinogenicity and the mean concentration of a given
substance can be used as a direct estimator for dose.

The true mean of the given substance is not known and must be
estimated from a sample of observations collected from some environmental
area of concern. Since measurements pf toxiec air contaminants involve
potentially expensive sampling procedures and even more expensive
laboratory determinations, the sample sizes used to characterize the mean
level of a toxic contaminant are typically rather small. Even so, if the
underlying data from which the sample has been drawn can be assumed to

follow a normal distribution, the simple average of a sample of

observations forms a satisfactory estimator for the mean. (Normally
distributed data follows the familiar symmetric bell-shaped curve with no
preponderance of values at either very high or very low levels.) The
uncertainty of the sample mean as an estimator for the true mean is often

summarized by presenting a confidence interval for the mean which gives a

range of values that one would expect to cover the mean a given percentage
(say 90%) of the time in repeated experiments, |

It is unfortunate that for most environmental data, the assumption
that the underlying distribution is normal will not be appropriate so that
the usual sample mean will not be a good estimator for the population
mean. One reason is that measurements made on toxie pollutants tend to

have more observations than one would expect under normality, both at very






high levels and at very low levels. The analysis of non-normal data can be

approached by attempting to find a transformation that produces a normally

distributed population when applied to the data sample. While the
estimation of the mean in the new scale can then be approached in the
usual way using normal theory, a method must be found for transforming the
estimators for the mean in the transformed scale back to an estimator for

the mean in the original scale. The logarithmic transformation is often

applied to pollution data leading to an estimation procedure based on the
lognormal distribution. (see Gilliom and Helsel (1986), Ringdal (1975) and
Blandford and Shumway (1982). 1In this report, we will consider the more

general class of power transformations due to Box and Cox (1964) (see

Johnson and Wichern (1988),pp. 155-162 for a more recent description).

A further complication is introduced by the fact that laboratory
determinations can only be measured above some detection limit, making it
impossible to know the exact sample values of observations collected that
have apparent concentrations below this limit. Even if the data are
normally distributed, this censoring means that it is now impossible to
calculate the conventional sample mean since we have no way of deciding
what to fill in for those values that are only measured as being below the
detection limit. The problem of estimating the mean for censored data

using the method of maximum likelihood (which yields the ordinary sample

mean in the uncensored case) was first considered by Cohen (1959) and
later by Ringdal (1975). We will use maximum likelihood estimators in
this report because they provide a convenient means for handling the
problems introduced with censored transformed data.

To sﬁmmarize, in this report we seek a method for estimating the mean

using small samples of non-normal environmental data that are subject to






censoring because of detection limits. We will also develop procedures
for computing confidence limits for the mean using large-sample theory for
maximum likelihood estimators (the delta method (Cramer (1946)) and a
simulation procedure called the bootstrap (Efron (1979),(1982)). These
techniques are described in Sections 2,3 and 4. An evaluation using a

large range of contrived data is presented in Section 5.

2. The Use of Transformations

When environmental data cannot be modeled in terms of the normal
distribution, the sample mean is not the appropriate estimator for the
‘population mean. In such cases it may be appropriate to search for a
function of the data values that conforms more closely to the normal

distribution. Although the use of the logarithmic transformation for

purposes of stabilizing variances and transforming to normality is well
established in the literature, there may be occasions in which other
transformations or perhaps even no transformation at all may be more
appropriate.

A more general class of power transformations due to Box and Cox

(1964) (see Johnson and Wichern (1988), pp. 155-162)) can be applied to
the data and includes the logarithm, no transformation and various other
power laws as special cases. Since environmental data are non-negative,
the power transformations considered in thi§ report are limited to (1) no
transformation, (2) fourth root, (3) square root and (4) logarithmic.
Using one of the transformations in this family leads one hopefully to a
set of transformed data which follows a normal distribution. There are

two problems that occur.when the use of a transformation is considered.






The first problem is in deciding which of the power laws produces
data that conforms best to the normal distribution. Box and Cox (1964)

proposed evaluating the likelihood function under each of the proposed

transformatibns assuming that the likelihood function of the transformed
data is that of a set of normally distributed observations. Then, one
simply chooses the transformation that produces the largest value for the
likelihood function. This procedure has the virtue that it can be done
automatically using a computer but this does not necessarily mean that it
is the best method for choosing a transformation. The use of probability
plotting and comparing to the ordinates of the normal distribution
function is still highly recommended. It is also important to establish
for any given type of experimental data some common transformation that
produces normally distributed observations in the majority of cases.
Later on we shall see how the confidence intervals computed are affécted
by choosing the wrong transformation.

The second problem that one has when carrying out an analysis on
transformed data is that the mean of the transformed data is rarely the
parameter of interest. While the transformed scale can be of great
interest in some fields, (eg. the use of the logarithmic scale in
measuring seismic magnitudes) the primary objective here is to obtain an
estimate of the mean and a confidence interval in the original scale of
measurement. The theoretical mean in the original scale will be a non-
linear function of the means and variances in the transformed scale.
Fortunately, we are again saved by the likelihood function since it can be
maximized over means and variances in the transformed scale using normal
distribution theory. Since maximum likelihood estimators of functions are

the corresponding functions of the maximum likelihood estimators, we






obtain easily the maximum likelihood estimators for the mean in the
original scale by simply taking the appropriate inverse functions of the

estimators in the transformed scale.

3. Estimation of the Mean

We continue the discussion begun in the last section relating to
estimating the mean, first in the transformed scale taking into account
the censoring and then in the original scale. When there are observations
that are only known to have been below some detection limit, these
observations are said to be censored. Various procedures can be
considered for estimating the mean of a set of observations when some of
the observations are censored. For example, a simulation study using
small normal data sets was performed by Gleit (1985) who compared the

performance of numerous estimations, including several f£ill-in options

involving the proxies zero, the threshold and the conditional expectation
given the censoring. He concludes that the procedure of filling in
conditional expectations leads to an estimator that has the smallest mean-
square error of those considered.

The approach taken in this report will be to use the maximum
likelihood procedure to estimate the mean and variance parameters in the
transformed scale under censoring and then to use the properties of
maximum likelihood estimators to get the maximum likelihood estimators in
the original scale. One problem with this approach is that the likelihood
function for the censored data involves the cumulative normal distribution
function, which produces a non-linear likelihood that cannot be solved
directly for the estimators in the transformed scale. An early treatment

of this problem using maximum likelihood is Poirer (1976).






Complicated likelihood functions involving missing or incompletely

observed data can be maximized using the Expectation Maximization (EM)

Algorithm of Dempster et al (1978). Aitkin (1981) and Blandford and
Shumway (1982) have applied this algorithm to the regression case.
Basically, the approach makes use of the likelihood of the complete data
under the assumption that the censored data points have been observed.
One can then calculate the conditional expectation of this likelihood
given the pattern of censoring. The EM Algorithm asserts that iteratively
maximizing this restricted likelihood with respect to the mean and
variance leads to a sequence of estimators that always increase the
likelihood function of the original censored data sample. Furthermore,
the sequence converges, in this case, to the unique maximizers of the
likelihood function for any fixed value of the transformation parameter.
Details and equations can be found in Shumway et al (1988) or Appendix B
of this report.

The procedure of the preceding paragraph leads to estimators for the
transformation power and for the mean and variance in the transformed
scale. The technique discussed at the end of the previous section leads
to estimators for the mean in the original scale. Again, details and

equations can be found in Shumway et al (1988) or in Appendix A.

4., Confidence Intervals

The procedure described in the previous section leads to maximum
likelihood estimators for the means in the original scale but does not
immediately produce an estimator for the variance of the estimated mean or

a confidence interval. With a confidence interval, one can make an

assessment of the probable range within which the true mean can be






expected to lie. More precisely, a confidence interval is a range of
values for the mean which might be expected to cover the mean a certain
percentage of the time in repeated applications of the confidence interval
methodology. For example, 90% confidence intervals should cover the true
mean concentration 90% of the time over the long run. One should be
careful not to interpret this as being a statement about the probability
of the mean lying within the interval at any given trial which would be
either 1 or O.

Again, in developing confidence intervals we are faced with choices.
One can note that the maximum likelihood estimators developed above will
have a limiting normal distribution with a predictable mean and variance
in large samples. This leads to the use of the delta method, usually
credited to Cramer (1946). If we are not comfortable with large-sample
theory because our samples are generally not large, a resampling method
due to Efron (1979),(1982),1985),(1987) called the bootstrap may be

useful. The adaptation of these two methods to the problems at hand are

described below.

4.1 The Delta Method

The computation of the large-sample variance covariance matrix of the
ﬁean and variance in the transformed scale depends on technical
manipulations to compute the second derivatives of the log-likelihood
function and is given in Shumway et al (1988) and in Appendix A of this
report. The computation of the large-sample variance of the mean in the
original scale depends on expanding it in a Taylors Series about the mean

and variance in .the transformed scale and then using the central limit






result of Cramer (1946) for functions of asymptotically normal variables.
The resulting large sample variances for the non-linear functions implied
by using the four transformations mentioned earlier are presented in
Shumway et al (1988) and in Appendix A of this report.

The manipulations of the preceding paragraph result in a large-sample
expression for the variance of the maximum likelihood estimator. An
approximate confidence interval for the mean can then be computed by
substituting its large-sample standard deviation into the familiar formula

for confidence intervals for estimated mean.

4,2 Bootstrap Methods

The bootstrap of Efron (1979) is a resampling method that develops
confidence intervals for the mean from the sampling distribution
of means estimated from the resampled data. To illustrate, suppose that
we have a sample of 20 observations on a toxic contaminant and that
several of the observations have only been measured as being below some
fixed detection limit. The method of Section 3 is used to compute a
maximum likelihood estimator for the mean in the original scale and we
wish to have an idea of the basic uncertainty in this estimator.

Consider drawing a sample of 20 observations with replacement from
the original sample in the previous paragraph. Since the sample is drawn
with replacement so that the same element can appear more than once, the
"bootstrap” sample drawn will almost certainly be different than the
original sample and will yield a different estimator for the mean. This
procedure can be repeated a large number of times and each time one will,
with high probability, obtain a different sample and a different estimator

for the mean. All of these maximum likelihood estimators for the mean can






be combined into an empirical cumulative distribution function by
arranging them in ascending order from smallest to largest. Within this
sample, one can compute values (called percentiles) which are such that 5%
and 95% of the means lie respectively below the values. These

percentiles define the 90% bootstrap confidence interval.

One can also use the bootstrap sample to calculate standard errors
and to asséss the bias problem with maximum likelihood estimators in small
samples., Efron (1985) has proposed a procedure leading to a bias-

-

corrected bootstrap interval which adjusts the bootstrap percentile

distribution according to the location of the maximum likelihood estimator
in that distribution. One can also standardize by adjusting the bootstrap
estimator. The adjustment is made by subtracting the maximum likelihood

estimator of the original sample from it and then dividing by the standard
deviation of the original sample computed from the delta method leading to

bootstrap t- intervals (see Efron (1982)).

5. Simulations and an Example

In order to be able to choose a method to recommend from those
presented in Sections 2-4, a simulation study was designed using the

following four files of samples as inputs.

(a) 400 samples of size 20 with 10% censoring

(b) 400 samples of size 20 with 20% censoring

(c) 400 samples of size 50 with 10% censoring

(d) 400 samples of size 50 with 20% censoring
The above samples were generated for (1) Normally distributed data, (2)
Data for which the square root was normal and (3) Lognormally distributed

data, making a total of 12 files. To ensure comparability all files were

started with the same random number seed.
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Table 1 shows how well the Box-Cox method for choosing the best power

transformation performed on each of the samples. We note that the method

Table 1 Simulation results for censored mean estimation using the Box-Cox
transformation: the proportion of times each transformation
was chosen.

Proportion of Times Each
Transformation Chosen

Correct
Transf. Sample Cens, None Square Fourth log
to Size Root Root

Normality

None 20 10% .70 .12 .05 .14
20 20% .70 .09 .04 .17
50 10% .70 .14 .09 .07
50 20% .70 .14 .05 .11

Square

Root 20 10% .50 .19 .13 .19

| 20 208 .55 15 .09 21

50 10% .37 .29 .18 .16
50 20% .42 .27 .16 .16

log 20 10% .02 .13 .32 .53
20 50% .07 .21 .24 .48
50 10% .00 .03 .29 .68

50 20% .00 .08 .29 .63
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works quite well when choosing no transformation (correct 70% of the time)
or in choosing the logarithmic transformation (correct 48-68% of the
time). Note that in the case of the logarithmic transformation, the
method worked substantially better for the large samples. The differences
in performances between 10% and 20% censoring were minor. The method has
considerable difficulty in identifying the square root transformation when
it is the correct transformation to normality, with the preponderance of
mistakes slanted toward making no transformation.

Table 2 shows the converge of confidence intervals computed by four
methods when the power transformation is chosen by the Box-Cox method.
Since the nominal level for these intervals was chosen to be 90%, one can
evaluate how well the intervals are covering the known true value by
comparing the tabular entry to .90. Of course, the lengths of the
intervals, given below the proportion, are important as well; given that
the coverages are equal, one would prefer the shorter interval.

The delta method was the best performer overall with coverages of
.89- .90 for the normal and square root normal data and .84-.86 for the

lognormal data. The bias-corrected percentile interval (based on 1000

bootstrap replications) was the next best performer, but its performance
seemed to suffer some degradation as the censoring increased from 10% to
20%. The other methods did less well, particularly on the lognormal data.
The relatively less successful performance of the bootstrap based

percentile methods is not a complete surprise; it has been studied by

Loh (1987).
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Table 2 Simulation results: coverage proportions of confidence
intervals (nominal 90% coverage) for estimates of censored
means computed using the Box-Cox transformation. The
numbers in parentheses are the average lengths.

Correct
Transf. Sample Cens. Delta Perc. BC Perc. Bstrp t
to Size Method
Normality
None 20 10% .89 .83 .87 .87
(.72) (.65) (.66) (.76)
20 20% .89 .76 .83 .83
(.73) (.56) (.59) (.72)
50 10% .90 .82 .86 .85
(.46) (.42) (.42) (.46)
50 20% .88 .72 .76 .78
(.47) (.37) (.37) (.44)
Square
Root 20 10% .89 .82 .89 .87
(1.84) (1.67) (1.72) (2.02)
20 20%. .89 .75 .84 .79
(1.92) (1.49) (1.58) (1.99)
50 10% .89 .82 .88 .84
(1.19) (1.08) (1.10) (1.23)
50 20% .88 71 .77 .73
(1.22) (0.97) (1.00) (1.22)
log 20 10% .84 .78 .86 .72
(26.8) (25.4) (30.6) (44.5)
20 20% .84 .70 .82 .67
(26.9) (23.1) (30.6) (44.5)
50 10% .86 .78 .84 .75
(17.8) (16.5) (19.5) (25.5)
50 20% .85 .62 .73 .63

(18.0) (15.0) (17.8) (31.7)
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It is interesting that all the methods did least well for the case of
lognormal data, which is probably the case of greatest interest. It was
conjectured that the less than optimal coverage might have been due
mainly to the significant portion of cases where the Box-Cox method dud
not recommend the logarithmic transformation.

There is strong support in the literature (see, for example, Hinkley
and Runger (1984)) for the idea of doing the analysis assuming a fixed
power transformation. Table 3 shows the coverages resulting from fixing
the transformation at no transformation or at the logarithmic and applying
the results to normal and lognormal data.

It is clear that applying the logarithmic transformation when the
data are, in fact, lognormal brings the coverages right up to .89-.90.
Hence, it is probably the incorrect Box-Cox choices in the original
simulation of Table 2 that are causing the reduced coverages. Applying no
transformation when the data are lognormally distributed results in a
severe reduction in coverage (.73-.82). Hence, it is clear that
estimating the transformation as in Table 2 yields better coverages;
knowing the right transformation as in Table 3 does even better.

The upper part of Table 3 is interesting in that we don’t seem to pay
much of a penalty in coverage for assuming that a lognormal transformation

is appropriate for normally distributed data.






Table 3

Simulation results: coverage proportions of delta method
confidence intervals (nominal 90% coverage) for estimates
of censored means using the indicated transformations.

Correct
Transf. Sample Censoring Transformation to Normality Used
to Size None Log
Normaility
None 20 10% .89 .90
(.73) (.73)
20 20% .89 .89
(.75) (.71)
50 10% .89 91
(.47) (.47)
50 20% .89 .88
(.48) (.45)
log 20 10% .82 .90
(28.5) (31.2)
20 20% .78 .89
(31.7) (31.9)
50 10% .82 .90
(19.8) (19.4)
50 20% .73 .89
(22.0) (19.7)
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The average biases and mean square errors for the maximum likelihood
estimators are given in Table 4. It is interesting to see that on the

average, the bias of delta method is only about 1% of the mean.

Table 4 Bias and mean square error simulation results for censored
mean estimation using the Box-Cox transformation.

Correct
Transf. Sample Cens. Maximum Likelihood
to Size Average Bilas Average MSE

Normality (400 samples) (400 samples)
None 20 10% .003 .049
E(x)=4

20 20% .004 .051

50 10% .003 .021

50 20% .004 .022
Square
Root 20 10% -.023 .317
E(x)=6.5

20 20% -.056 .353

50 10% -.014 .135

50 20% -.056 .353
log 20 10% -.36 34.58
E(x)=33.115

20 20% -.28 35.52

50 10% -.43 84 .47

50 20% -.68 87.09
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To summarize, the delta method seems to do the best over all
alternatives. Since the coverage can be affected by either by choosing
the wrong transformation all of the time or by choosing the wrong
transformation some of the time, it is probably advisable to run the Box-
Cox over a reasonable number of environmental samples from a given
category and then use the winning transformation to construct the
confidence intervals for all such samples.

A BASIC computer program for PC-compatible microcomputers and a
FORTRAN program are available from the Research Division of the California
Air Resources Board. Refer to program MNWDL when requesting copies. The
programs allow one to determine a power transformation using the data and
the Box-Cox method or to specify a tramsformation. The program always
outputs: (1) the estimated mean in the transformed and original scales and
(2) its standard error and 90% and 95% delta method confidence intervals
in the original scale. Although the percentile bootstrap and bias-
corrected percentilé bootstrap confidence intervals appeared to give less
satisfactory coverages, the user can specify that these intervals be
computed as well. Generally, 1000 bootsﬁrap replications will be
sufficient. For a sample of size 20 they will take about 10 minutes on a
microcomputer equipped with an 8087 math computation chip or about 1
minute on a microcomputer with an 80386 processor. The delta method
computations are very fast on any machine. Program documentation and
listings are given in Appendix B.

We illustrate the approach on a 24-hour field sample taken during
ambient air monitoring of ethyl parathion in the Imperial Valley,
California. The data are given in Table 5; five of the fourteen values

are below the detection limits. The original investigators computed means
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Table 5 Heber Station Ethyl Parathion Concentrations, Imperial Valley,
California. (Values in pargntheses indicate observed
(1) or censored (2)) (ug/m )

.010(2) .010(2) .010(2) .010(2) .018(1) .032(1) .012(1)

.015(1 .010(2) .078(1) .092(1) .023(1) .018(1) .010(1)

of this sample in several ways, obtaining: a mean of .033 for the nine
samples above the detection limit, a mean of .025 with censored values
replaced by .01, and a mean of .023 with censored values replaced by .005.
Applying the Box-Cox procedure gave values for the log likelihood of
24.58, 24,29, 23.73 and 21.90 corresponding to the logarithmic, 4th root,
and square root transformations and no transformation, respectively;
accordingly, the log transformation was used in the analysis. The maximum
likelihood estimator is .0233, which is closest to the mean for all

samples exceeding .005. The 90% confidence intervals are shown in Table 6

Table 6 90% Confidence Intervals for Ethyl Parathion Means, Imperial
Valley, California (Estimated Mean is .0233)

Method Lower Limit Upper Limit
Delta .0101 .0366
Percentile .0118 .0299
BC Percentile .0184 .0446

and indicate that the three methods give somewhat different results with
the bootstrap method giving shorter intervals. On the basis of the

simulations, these intervals probably do not attain a coverage of 90%.
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6. Recommendations

This report has concentrated on the development of a procedure using
transformation, the EM algorithm, and maximum likelihood estimation to
estimate means of small samples of non-normally distributed envirommental
data which have some observations below the detection limit.

In general, we concluded through the use of simulations that the
confidence intervals for the mean were best when the correct
transformation is known and less well determined when the transformation
had to be estimated. Hence, it seems best to analyze a large number of
consistent samples with the hope that they all follow approximately the
same probability law; for example, they may all be approximately
lognormally distributed.

The simulations also indicated that, over the conditions considered,
namely sample sizes of 20 and 50 with 10% and 20% censoring, the
approximate delta method intervals based‘on the large-sample properties of
the maximum likelihood estimator did better than bootstrapping. If the
transformation-was known, the 90% delta method intervals covered the true
mean about 90% of fhe time in all cases whereas the bootstrap coverages
were as low as 62% for a nominal 90% interval. If the transformation was
not known, the coverages achieved by the delta method were generally at
least 85% for a nominal 90% interval. Hence, the delta method is

recommended on the basis of this study.
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APPENDIX A: Technical Details

We summarize here the technical details and equations needed to
apply the estimation procedures in the body of the report. A full
technical exposition is in Shumway et al (1988).

To set the notation, assume that N independent observations are
available of which nj are observed and ny are below detection limits.
Suppose that the sample is denoted by x3,x2,...,xy and that if the
observation xj is censored, we know only that xj < Tj where T; is some
lower detection threshold, allowed to differ for each sample value.

If xj is observed, we write x{ > T; although the value of Ti in this

case is irrelevant.

Define the transformed variables

I(x’.: - /A 20
T mx A=0 (AL)

when xj is observed and the transformed thresholds

. Ja-on A0
T; - | mm -0 (A2)

when xj is censored. This is the Box-Cox transformation (see Box and
Cox (1964)) which we consider for xXi positive (x; > - 1/)) and
11
A =0, a9 and 1.
Now we may write the log likelihood of the original observations

X1,...,XN, assuming the transformed observation yj,...,yy are normally

distributed with mean g and variance o2, as






o3 1
= . — 2 _ = p] .2 = .
An L{x,p,0) 2 in o 902 x{5T; (yi-#u2) + x4>T§ Ji (D)
(A3)
= .
x1<T3 &(Z1)

where the notation xj < Tj denotes summing over the censored values,

Ji1(A) is the Jacobian

J (A - 1)dn x4 A0
|

Ji() - - In x3 A=0 °’ (44)
T*
i
z; - =% (A5)
and
22) = [ ox)dx (A6)
-Q0
denotes the normal cumulative distribution function with
-1/2 1 1
o) = (2m) " exp{- L x2} (A7)

The normal probability density function.
Maximizing the log likelihood (B3) will lead to estimators for p and
o, the mean and standard deviation in the transformed scale. We are interested in

the maximum likelihood estimators for the mean of x, namely

EG) = [ Oy (L) & (8)
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which is nonlinear function of the parameters A,u and o. When A\=0, for

example, corresponding to the lognormal distribution,
E(X) = exp{p + % 02}. ‘ (A9)

The values of E(x) for )\ = % , % and 1 are shown in Table Bl.

Table Bl Mean Functions in the Original Scale and Partial Derivatives

dE(x) JE(x
A E(x) I ]

Y exp{#+% 02} . exp{p+% 02} aexp{p+% 02}
.25 f% o2+ % 02(%p+1)2+ (%;Hl)4 (%p+l)3+ 16 az(zp+l] % g+ %(%p+l)2
.50 [%p+l)2 + % o2 (%u+l] % o

.00 (p+1) 1 0

The log likelihood function (B3) can be maximized by the Newton-
Raphson or EM algorithms to get maximum likelihood estimators for A, p and
o and then, by substitution into (B8), the maximum likelihood estimator

for E(x).

In this report, we use the EM algorithm of Dempster, Laird and Rubin

(1977). The algorithm operates on the log likelihood
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N 1 3 2 3
In L'(Ap,0) = - 5 do? - 505 2 (yi-w) o+ BT (A10)

written as though no observations were censored. Iterations are defined
as successively maximizing the expectation of the complete-data log
likelihood (Bl0) conditioned on the censoring pattern. For example, if
bk and op are the current estimators at iteration k, the EM algorithm

obtains pp41 and oy by maximizing

Ek[ﬂn L'(A,p,a)lcensoring] - g In o2 - 5%5 x-ETi (yi_-u)2
i

(All)
N

.1l s [ )2 s *] s g
202 XiSTi Ek (YIL l‘) ly].STi + im] J].(A)

over u and o for a fixed M. This procedure increases (B3) at each step
and converges to the unique maximizer by results obtained by Wu (1983).
Scanning the resulting maximizers over )\ leads to the final estimator.

The updated values for u and ¢ at each stage are computed using

A 1 f <% \
B+l = \xiETi yi + xiETi Ex (y1lys=T}) s (al2)
and
2 1J 2 2 \
el = § \egdp, 0w+ B B[ (r1-md) * ys=t¥] } (A13)

where the conditional means and variances are computed from

©(Z3)
Ek[(YilYisTi] = Kk-Ok @(zi) (Al4)

v(Z;)
Ek[(yi-#)ZIYiSTi] - oy [1'Zi @(z;) ] (A1)
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where Z; is defined in (B5).

The above procedure leads to maximum likelihood estimators for A, u, and
o and hence, by substituting into (B8), for E(x). We may also develop
a confidence interval for E(x) by noting that it is a function of the
parameter véctor 8 = (p,0)'. It is convenient and realistic to regard
XA as being fixed after the arguments in Hinkley and Runger (1984). An

A
estimator for the variance-covariance matrix of § is

2 -1
cov(ﬂ] - I - 25%§§7L }3 (Ale)

where log L is abbreviated for (B3). The elements of

3°log L [Lw Lw]

- Al7
3690 Loy Loo (A17)
are computed as
m 1 2
Lpup = - = - =5 _ & (Z:R;+R}), Al8
0-2 0-2 xiSTi( 11 l) ( )
2 1 2 _2
Lo = - 3 XiETi (yi-p] - o2 Xi_E_T]'_(ZiRi-'-ziRi-Ri) (A19)
and
ny 3 2 1 2_2 _3 '
Loo = 52 T g4 Xj_ETi (yi-pk) -5z XizTi (ZiRi"'ziRi'zziRi) (A20)
where
v(Z1)
Ry = 3(Zy) (A21)

oF

The basis for the delta method of Cramer (1946) is that E(x) is a

function of E = (;,3)' which are expected to be jointly asymptotically
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normal so that var(E(x)) can be consistently estimated by

var (E(x)) = [3gﬁf ]é csv(ﬁ)[égéﬁl]g (a22)

where the 2x1 vectors of partial derivatives of E(x) are as given in

Table Bl. This implies an approximate 100(l-a)percent confidence

interval of the form

A

E(x) * zé/z cov(E(x)). (A23)

where Z, is the 100(l-a)percentile of the standard normal.






